Chapitre III. La Jonction pn. Diode semiconductrice.

- 3.1. Notations, définitions
- 3.2. Jonction pn non polarisée et polarisée
- 3.3. Caractéristiques statiques de la jonction pn
- 3.4. Régime de claquage de la jonction pn
- 3.5. Régime dynamique de la jonction pn
- 3.6. Diode semiconductrice

3.1. Notations, définitions

Définition: jonction pn = structure semic. physique. par 2 reg. sc. n et p, séparé par la jonction métallurgique.

3.1. Notations, définitions

- Les flèches sur les symboles électroniques sont de zone p à zone n (p→n).
- Jonctions Symmétrique
- Jonctions Disymétrique ou Asymétrique
- Approximation de profil abrupt
- Jonctions linéairement calibrés

3.2. Jpn non-polarisée et polarisée3.2.1. Jonction non-polarisée

3.2.1.1. Phénomènes physiques

Si JPN pas polarisé électriquement et donc il est entendu que pas d'autres stimuli comme champ magnétique, lumière, etc, n'existe pas → jpn est a équilibre thermique.

En jpn non polarisée existe champ électrique interne, $\mathscr{E}_{int}\neq 0$, afin, différence interne de potentiel, $\phi_{Bo}\neq 0$; toutefois $I_A=0$!

Cela ne pouvait pas être atteint dans un conducteur.

3.2.1.1. Phénomènes physiques

• <u>Def.</u> Zone de charge d'espace ZCE. (region vidée de porteurs) sau RSS (Rom)

3.2.1.1. Phénomènes physiques

- Explications qualitatives et quantitatives de l'apparition ϕ_{Bo} .
- Schéma Énergetique pour JPN non polarisée

3.2.1.1. Phénomènes physiques

• Relation Energy - Potentiel : E = -qV.

$$p(-l_{p0}) = N_{A} = n_{i} \cdot \exp \frac{E_{i}(-l_{p0}) - E_{F}}{kT}$$
$$n(l_{n0}) = N_{D} = n_{i} \cdot \exp \frac{E_{F} - E_{i}(l_{n0})}{kT}$$

Remplaçant p et n dans la page précédente:

$$\phi_{B0} = \frac{kT}{q} \ln \frac{N_A N_D}{n_i^2}$$

Distribution de charge: $\rho_{v}(x) = \begin{cases} -qN_{A}, daca & x \in (-l_{p0}, 0) \\ +qN_{D}, daca & x \in (0, l_{n0}) \\ 0, & \text{in rest} \end{cases}$

De l'équation du Poisson : 🖉

$$\mathcal{E}(x) = \int \frac{\rho_V(x)}{\varepsilon} dx$$

$$\mathscr{E}(x) = \begin{cases} -\frac{qN_A}{\varepsilon}(x+l_{p0}), daca & x \in (-l_{p0}, 0) \\ +\frac{qN_D}{\varepsilon}(x-l_{n0}), daca & x \in (0, l_{n0}) \\ 0, & \text{in rest} \end{cases}$$

Déduisez les constantes d'intégration des conditions aux limites suivantes :

$$\mathcal{E}(-l_{p0}) = \mathcal{E}(l_{n0}) = 0$$

$$V(-l_{p0}) = 0, V(l_{n0}) = \phi_{B0}$$

• Par l'intégration du champ électrique :

$$V(x) = \begin{cases} 0, & \text{pour } x \leq -l_{p0} \\ \frac{qN_A}{2\varepsilon} (x + l_{p0})^2, & \text{pour } x \in (-l_{p0}, 0) \\ \phi_{B0} - \frac{qN_D}{2\varepsilon} (x - l_{n0})^2, \text{pour } x \in (0, l_{n0}) \\ \phi_{B0}, & \text{pour } x \geq l_{n0} \end{cases}$$

- De la condition de continuité
- champ électrique en x=0:
- potentiel en x=o:

$$N_{A}l_{p0} = N_{D}l_{n0}$$

$$\frac{qN_{A}}{2\epsilon}l_{p0}^{2} = \phi_{B0} - \frac{qN_{D}}{2\epsilon}l_{n0}^{2}$$
(*)

 $l_{RSS0} \cong$

• On résout le système (*) avec inconnues l_{no} , l_{po} . En additionnant $\rightarrow l_{RSSo}$:

$$l_{RSS0} = \sqrt{\frac{2\varepsilon}{q} \left(\frac{1}{N_A} + \frac{1}{N_D}\right) \cdot \phi_{B0}}$$

• Case – jonction pn disymétrique \rightarrow

3.2.2. Jonction pn polarisée3.2.2.1. Phénomènes physiques

- Polarisation Directe (Forward)
- Polarisation Inverse (Reverse)

 $\rightarrow \mathcal{E}_{ext}$

• PD: injection de porteurs – recombinaison = prédominante

3.2.2.3. Approximation de faibles (petites) niveaux d'injection

• Approximation permettre recombinaison avec des temps de vie de porteurs en excès.

$$\begin{cases} n(-l_p) << p_{p0} \cong N_A \\ p(+l_n) << n_{n0} \cong N_D \end{cases}$$

3.2.2.3. Approximation de quasi-équilibre

- L'équilibre thermique etait: $p_0 n_0 = n_i^2$.
- Maintenant, pour la tension V_A, on a:

$$p \cdot n = n_i^2 \cdot \exp\left(\frac{qV_A}{kT}\right)$$

• Explication: Les excès de porteurs minoritaires dans les régions neutres produisent E_{Fermi} fractionnement en E_{fn} et E_{fp} avec une quantite proportionnel a cause qui a produit la division

$$E_{Fn} - E_{Fp} = qV_A$$

3.3. Les caractéristiques statiques de la jonction pn

- Soit une jpn polarisée à une tension ct. V_A, traversé par un courant I_A.
- La determination de la caractéristique statique reviens a déterminer la fonction : $I_A = I_A(V_A)$.
- On définira les trois composantes du courants:
- - Courant de diffusion de trous, $I_{p,dif}$
- - Courant de diffusion d'électrons, $I_{n,dif}$
- - Courant de génération-recombinaison, $I_{g,r}$

3.3. Les caractéristiques statiques de la jonction pn

⊕

0

n

Х

In.

La densité de courant est calculée par superposition : J_A $j_{A} = \underbrace{j_{p}(l_{n}) + j_{n}(-l_{p})}_{j-difuzie} +$ J_{g,r} Jn lgr j-generare-recombinare Jp

3.3.1. Le calcul des courants de diffusion

• Nous commençons avec équations de cont. pour électrons et trous, en reg. statique: $(\partial/\partial t = 0)$

3.3.1. Le calcul des courants de diffusion Ct C_{1,2} sont determine par conditions aux limites :

$$\begin{cases} p_n(\infty) = p_{n0} \\ p_n(l_n) = p_{n0} \cdot \exp\left(\frac{qV_A}{kT}\right) \end{cases}$$

- Pour $x \rightarrow \infty \rightarrow C_1 = 0$
- Pour $x=l_n \rightarrow C_2$.
- Ramplacant C _{1, 2} résulte:

$$p_{n}(x) = p_{n0} + p_{n0} \cdot \left[exp\left(\frac{qV_{A}}{kT}\right) - 1 \right] \cdot exp\left(\frac{-x + l_{n}}{L_{p}}\right)$$

3.3.1. Le calcul des courants de diffusion

• La densité de courant de trous a $x = l_n$:

$$j_{p}(l_{n}) = -qD_{p}\frac{\partial p_{n}}{\partial x}\Big|_{x=ln} = q\frac{D_{p}p_{n0}}{L_{p}}\cdot\left[exp\left(\frac{qV_{A}}{kT}\right)-1\right]$$

• La densité de courant d'electrons $a x = -l_p$:

$$j_{n}(-l_{p}) = qD_{n}\frac{\partial n_{p}}{\partial x}\Big|_{x=-lp} = q\frac{D_{n}n_{p0}}{L_{n}} \cdot \left[exp\left(\frac{qV_{A}}{kT}\right) - 1\right]$$

• Par superposition :

$$I_{A,dif} = qA_{j} \cdot \left(\frac{D_{p}p_{n0}}{L_{p}} + \frac{D_{n}n_{p0}}{L_{n}}\right) \cdot \left[exp\left(\frac{qV_{A}}{kT}\right) - 1\right]$$

$$\left(D_{p}n_{n} - D_{p}n_{n}\right)$$

$$I_{0,dif} = qA_j \cdot \left(\frac{D_p p_{n0}}{L_p} + \frac{D_n n_{p0}}{L_n}\right)$$

3.3.2. Courants génération-recombinaison

- Courants génération-recombinaison.
- Pair electron-trou en ZCE. Apres calculles:

$$I_{A,gr} = qA_{j} \cdot \frac{n_{i}l_{RSS}}{2\tau_{0}} \cdot \left[exp\left(\frac{qV_{A}}{2kT}\right) - 1 \right]$$

• Ou:

$$I_{0gr} = qA_{j} \cdot \frac{n_{i}l_{RSS}}{2\tau_{0}}$$

- Crt $I_{\rm gr}$ dépend exponentiellement de la tension $V_{\rm A}$, mais l'argument est $qV_{\rm A}/{\bf 2}kT.$

3.3.3. Le courant total par jpn

• Par superposition résulte le modèle physique de la caractéristique statique :

$$I_{A} = I_{Adif} + I_{Agr} = I_{0d} \cdot \left[exp\left(\frac{qV_{A}}{kT}\right) - 1 \right] + I_{0gr} \cdot \left[exp\left(\frac{qV_{A}}{2kT}\right) - 1 \right]$$

- <u>Obs:</u> • <u>Obs:</u> • <u>I</u>_A \cong -I_{0d} - I_{0gr} = I₀
- 1. En PI: $(V_A < 0)$ $I_A = -I_{0d} I_{0gr} I$
- 2. En PD: $(V_A > 0)$ $I_A \cong I_{0d} \cdot \exp\left(\frac{qV_A}{kT}\right) + I_{0gr} \cdot \exp\left(\frac{qV_A}{2kT}\right)$

3.3.3. Le courant total par jpn

• Le model empirique:

$$I_{A} = I_{0} \cdot \left[exp\left(\frac{qV_{A}}{nkT}\right) - 1 \right]$$

- I_o est courant de saturation et n est le facteur d'idéalité.
- Par logarithme on a :

$$\ln I_A = \ln I_0 + \frac{q}{nkT} V_A$$

3.3.4. Modèle simplifié des caractéristiques statiques

Modèles simplifiés succesives:

3.4. Regime de claquage de la jpn

- En PI, pour $V_A = -V_{BR} < o \rightarrow I_A$ croît tres fort.
- Mécanismes de claquage:
- *1. Multiplication en Avalanche des portteurs (ionisation par choc ou impact)*
- 2. *Effet Zener*. J p⁺n⁺ rupture des liaisons covalente sur champ electric forte.

3.4. Regime de claquage de la jpn

• Formule pour V_{BR} (x):

$$V_{BR} = \frac{\varepsilon_S \mathcal{E}_{cr}^2}{2qN_D}$$

Materialul	Ge	Si	SiC (-4H)	C (Diam)	SiO2
$\mathscr{E}_{\mathrm{cr}}\left(\mathrm{V/cm}\right)$	10 ⁵	4x10 ⁵	3x10 ⁶	2x10 ⁷	1.1x10 ⁷
ε _r	14	11.9	9.7	5.5	3.9

3.4. Regime de claquage de la jpn

• Applications: stabilisateur de la tension.

• Crt varie dans une large gamme : de 1nA a I_{ZM} (~ 200mA ...10A), mais V sur diode = ct (stabilise): $V_R \approx V_Z$.

3.5. Régime dynamique pour jpn3.5.1. Circuit équivalent de petit signal et basse fréquence

• Régime dynamique - v_a(t) plus V_A:

 $v_A = V_A + v_a(t) = V_A + V_a \sin\left(\omega t\right)$

• Condition du petit signal :

 cette hypothèse va permettre négligence V_a², V_a³,... en série du Taylor.

3.5.1. Circuit équivalent de petit signal et basse fréquence

 Condition de *basse freq*. fournit une fréquence f, telle que le courant i_A (t) peut suivre les variations de la tension sur jonction v_A(t):

$$i_{A}(t) = I_{0} \cdot \left[exp\left(\frac{qv_{A}(t)}{nkT}\right) - 1 \right] = I_{0} \cdot \left[\underbrace{exp\left(\frac{qV_{A}}{nkT}\right) \cdot exp\left(\frac{qv_{a}(t)}{nkT}\right)}_{f(va)} - 1 \right]$$

• Par developper en serie Taylor la fonction $f(v_a)$ en voisinage du point $v_a=0$ jusque a I term:

3.5.1. Circuit équivalent de petit signal et basse fréquence

$$i_{A}(t) = I_{0} \cdot \left[exp\left(\frac{qV_{A}}{nkT}\right) - 1 \right] + I_{0} \cdot v_{a}(t) \cdot \frac{q}{nkT} exp\left(\frac{qV_{A}}{nkT}\right)$$
$$\underbrace{I_{A}}_{I_{A}} = I_{0} \cdot v_{a}(t) \cdot \frac{q}{nkT} exp\left(\frac{qV_{A}}{nkT}\right)$$

• On va definir la résistance interne de la jonction:

$$R_{i} = \frac{V_{a}}{i_{a}} \approx \frac{nkT/q}{I_{0} \cdot \left[exp\left(\frac{qV_{A}}{nkT}\right) - 1\right]} = \frac{nkT}{qI_{A}}$$

3.5.1. Circuit équivalent de petit signal et basse fréquence

 Dans ce cas, le circuit équivalent est constituée uniquement de la résistance interne R_i :

 Quelle est la différence et quelle communion entre R_i et R_S?

3.5.2. Circuit équivalent de petit signal et toutes fréquences

Les éléments sont les suivants:

- Résistance interne Ri calculé par la même formule.
- La capacité de diffusion, C_{dif}, qui modèle charge mobile.

$$C_{dif} = \frac{\tau_0}{2R_i}$$

 La capacité de la barrière C_b, qui modèle charge fix de RSS.

3.6. Diodes semiconductrice Diodes semiconductrice ont de nombreuses applications.

3.6.1. Diode redresseur

• Rectifier mono-et bi-alternance.

3.6.2. Diodes stabilisateurs

- Ex. diode stab. 10DZ180 a $P_{DM}=10W$, $V_Z=180V$.
- Resulte Iz=18A.
- Diodes Zener ont Vz=1...200V.

Sensul curentului in PI, in regimul de stabilizare

3.6.3. Diode Varicap

- Diode <u>VAR</u>iable <u>CAP</u>acitor utilise : C_{tot} -V_R.
- Term echiv.: varicap diode, varactor diode, variable capacitance diode, variable reactance diode or tuning diode.
- Travaux dans Pol.Inv; crt I_A null (résiduel ~ nA);
- C_{tot} varie sur une large gamme de V_R .

• **Devoir**. Expliquer le fonctionnement, conformément à la formule :

$$C_{b} = \frac{C_{b0}}{\left(1 - \frac{V_{A}}{\phi_{B0}}\right)^{m}}$$

3.6.4. Diode de commutation

- Ex. 1n4151: a **t_{rr}=2ns**. (ver 8...10ns).
- Le contrôle du trr est realise par éléments d'impureté de type Fe, Au, qui introduisent des niveaux profonds en BI \rightarrow vitesse de recombinaison augmente \rightarrow temp decrois

3.6.5. Diode Schottky (CMS)

- Il est basé sur le contact direct du métal sur un semiconducteur n (CMS).
- De ex. Pt sur Si-n, dopee a 10 ¹⁶cm⁻³ assure un contact redresseur.
- Fonctionne uniquement avec les porteurs majoritaire -> évite des processus de recombinaison - qui prennent beaucoup de temps -> sont plus rapides (sub-nanosec).