Lucrarea 2. Utilizarea programului LTSpiceIV pt simularea circuitelor cu tranzistoare MOS si Bipolare

OBIECTIVE

Scopul laboratorului este familiarizarea studenților cu mediul PSpice, simularea unor circuite simple și ințelegerea parametrilor de model ai dispozitivelor active de circuit.

Software-ul utilizat pentru prima lucrare este pachetul care încorporează LT Spice, de la adresa : <u>http://www.linear.com/designtools/software/</u>

INTRODUCERE

Circuitele propuse se vor descrie în SCHEMATIC.

PREGĂTIRE

Se recomandă studenților utilizarea calculatoarelor personale portabile pe care va fi instalat anterior PSpice din LTspice IV descarcat de la http://www.linear.com/designtools/software/și vor fi desenate circuitele propuse pentru acest laborator. În cadrul laboratorului va fi analizată funcționarea acestora și parametrii de model ai dispozitivelor semiconductoare active.

MOD DE LUCRU 1.

1. Se propune studierea următorului circuit simplu, care poate fi deschis din biblioteca

Program Files\ LTC\LTSpice IV\Examples\EDUCATIONAL\stepmodelparam.asc :

- 2. Selectați File -> Open ->. stepmodelparam.asc
- Acum, vă aflați déjà în mediul SCHEMATIC în care circuitul cu un tranzistor bipolar este gata desenat.

Vizualizați circuitul și meniurile.

- 4. Acum sunteți gata pentru a simula circuitul. Selectați Simulate ->Edit Simulation Command Acum puteți vizualiza analiza DC Sweep, cu care ati fost familiarizați în lucrarea precedentă, dar mai complex, variind 2 surse. Prima Linie de comandă afişată sub circuit descrie exact această analiză.
- 5. Pentru acest circuit simplu, mai există şi o a doua linie de comandă. Pentru început o vom şterge prin simpla poziţionare pe ea şi Click dreapta şi vom salva fişierul cu un alt nume într-un director de lucru permis . (sau o comentam dand pe ea clic dreapta si bifand in fereastra - "Comment".)
- Acum edităm prima linie și o reducem la .dc V1 0 10 10m
- 7. Din meniul Simulate -> Run.
- 8. Din meniul View ->Visible Traces
- 9. Alegem I(I1) TEMA 1. Ce reprezintă această curbă?

G

Lucrarea 2 de Laborator

Modele pentru SPICE ale dispozitivelor semiconductoare

TEMA 2. Ștergeți această curbă . Indicație selectați eticheta curbei din mijloc sus; dati 1+1clic. Adaugati curba V(B,Q1). In ce regim evolueaza tranzistorul?

10. Acum reedităm prima linie și o aducem la forma inițială.

.dc V1 0 10 10m l1 10u 50u 10u

Dati Run si re-afisati I(I1).

TEMA 3. Ce reprezintă aceste curbe? De ce sunt 5 curbe afișate? Înțelegeți forma complexa comenzii, facand mici modificari.

11. Ștergeți curbele. Afișați IC(Q1).

12. Reveniți la fișierul original cu cele 2 comenzi active. (activati comanda 2-a: .step NPN 2N2222(Vaf) 100 50 25

TEMA 4. Căutați în HELP comanda ".step" din a doua linie. In Help-ul din Schematics dati ->Help Topics -> sus alegeti din cele 3 pe Search -> scrieti .step -> apare o lista cu .AC... .step -> faceti clic pe .step -> da ca mai jos.

13. Selectați modelul de tranzistor prin poziționare și click dreapta

TEMA 4. Refaceți a doua linie de comandă, variind βF conform anexei, pagina 4, de la valoarea de 35 la valoarea de 105. Rulați și notați rezultatele. (ex. .step NPN 2N2222(BF) 35 105 35).

14. Selectați File -> Open ->. audioamp.asc

15. Explicați comanda .ac oct 10 1 100Meg.

Comanda face posibila estimarea amplificarii in tensiune nu numai la frecvente medii, cum ati calculat la seminar, ci la orice frecventa doriti. Mai intai vizualizati "Netlistul" asociat circuitului: View -> Spice Netlist. Observati aici denumirile nodurilor care va intereseaza. Inspectati curba VA/VB functie de frecventa. Extrageti frecventa la care amplificarea scade cu 3dB.

TEMA 5. Vizualizati ca pe osciloscop, semnalele in nodul IN si in nodul de iesire pe R14. Ce analiza si ce parametrii ati setat?

MOD DE LUCRU 2.

Realizați in LT Spice și simulați circuitul următor cu un tranzistor MOS.

Rezultatele analizei .OP (psf) apare in fig. dreapta. NOTATI in referat valorile psf obtinute de Dvs in LTSpice.

(a) Caracteristica de transfer $I_D - V_{GS}$

Această caracteristică se obține prin menținerea constantă a tensiunii V_{DD} și variația tensiunii V_{GG} între 0,1 V și 12 V cu un pas de 0,1V. Se simulează caracteristica de transfer $I_D - V_{GS}$ ce are drept ecuație :

$$I_{\rm D} = \frac{k_{\rm n}}{2} (V_{\rm GS} - V_{\rm T})^2$$
(1)

TEMA 6. Se observă că I_D are valori nenule, practic de peste 1uA, pentru V_{GS} > V_T ceea ce este în concordanță cu legile tranzistorului TEC-MOS, (exemplu ca in fig. 3). NOTATI tensiunea de prag extrasa de pe curba simulata I_D-V_{GS} acolo unde I_D devine 1uA. Apoi din psf cititi ID, VGS si utilizati modelul (1) pentru a extrage parametrul k_n. NOTATI deducerea lui k_n.

De fapt, putem vedea si caracteristica la scala log in fig. 3 (dr-b), pentru a observa fenomenul de "conductie sub prag".

Fig. 3. Exemple de caracteristici de transfer simulate la scale liniare (stg-a) si log (dr-b).

Obs: Se cere si SS in conductia sub prag: de ex cand crt ID scade de la 1uA la 0.1uA adica 100nA -> Vgs scade cam de la 332mV la 132mV --> SS~200mV/decada. Se parcurge graficul log cu cursorul pentru a citi exact. Parametrul SS minim la un tranzistor ideal, se demonstreaza la teorie ca nu poate scadea sub 60mV/dec.

TEMA 7. Extrageti parametrul SS al conductiei sub prag la tranzistorul utilizat de Dvs in simulari.

(b) Caracteristica de iesire.

Tot pe schema anterioara, va rugam sa mentineti constanta tensiunea VGG=12V si sa variaati alta tensiune pt obtinerea ID-VDS la un VGS=ct. Dupa simulare, adaugati graficul ID(M2) in functie de VDS, ca in fig.4.

5

G)

Fig.4. Exemplu de caracteristica ID-VDS.

TEMA 8. Extrageti si NOTATI de pe graficul Dvs, parametrii: tensiunea de intrare in saturatie a tranzistorului VDsat, parametrul λ din regimul de saturatie si rezistenta dinamica r_{ds}.

Obs. Tens. VDsat = VGS-VT iar λ cam tinde la zero si rds -> infinit.

MOD DE LUCRU 3.

Realizați următoarea oglindă dublă de curent. Simulați și vizualizați Vout

TEMA 9. Modificați lungimea și lățimea canalului apoi simulați și vizualizați Vout.

ନ୍ଦ

16. Schimbați modelul tranzistorului. Pentru aceasta folosiți biblioteca log018.1. Inserați o directivă din meniul Edit, SPICE Directive. Apoi tastati calea bibliotecii și tipul de tensiune de alimentare, de exemplu inserați una din comenzile exemplu:

EXEMPLUL1 .lib '/home/user/log018.l' TT pentru 1.8V tranzistoare N sau PMOS EXEMPLUL2 .lib '/home/user/log018.l' TT_3V pentru 3.3V tranzistoare N sau PMOS

*Se mai pot folosi următoarele tipuri de tranzistoare:

TT : typical model for 1.8V devices
SS : Slow NMOS Slow PMOS model for 1.8V devices
FF : Fast NMOS Fast PMOS model for 1.8V devices
SF : Slow NMOS Fast PMOS model for 1.8V devices
FS : Fast NMOS Slow PMOS model for 1.8V devices
TT_3V : typical model for 3.3V devices
SS_3V : Slow NMOS Slow PMOS model for 3.3V devices
FF_3V : Fast NMOS Fast PMOS model for 3.3V devices
SF_3V : Slow NMOS Fast PMOS model for 3.3V devices
FS_3V : Fast NMOS Slow PMOS model for 3.3V devices

•
TT_NA : typical model for 1.8V native NMOS
SS_NA : Slow NMOS for 1.8V native NMOS
FF_NA : Fast NMOS for 1.8V native NMOS
SF_NA : Slow NMOS for 1.8V native NMOS
FS_NA : Fast NMOS for 1.8V native NMOS
TT_3VNA : typical model for 3.3V native NMOS
SS_3VNA : Slow NMOS for 3.3V native NMOS
FF_3VNA : Fast NMOS for 3.3V native NMOS
SF_3VNA : Slow NMOS for 3.3V native NMOS
FS_3VNA : Fast NMOS for 3.3V native NMOS

Adăugați directive, plasați un transistor MOS standard din bibliotecă, apoi cu comanda Pick New MOSFET, înlocuiți-l cu alt model.

TEMA10. Explicați și experimentați cum se poate schimba tensiunea de prag a tranzistorului din biblioteca externă.

A

Exercitii suplimentare in LTSpice , la Lucrarea 2

Exercitiul 2. Studiul in Spice al portii logice NAND realizata c-MOS.

O poarta NAND (Not AND) este o celula de baza in implementarea circuitelor integrate digitale. Implementarea ei cu tranzistoare MOS atat cu canal n cat si cu canal p (tehnologia MOS complementara sau c-MOS) se observa in fig. 6. La etajul superior avem 2 tranzistoare MOS cu canal p in paralel, iar la etajul inferior avem 2 tranzistoare MOS cu canal n plasate in serie. Cele 2 intrari ale portii NAND sunt pe portile tranzistoarelor si sunt comandate de sursele de tensiune de tip pwl: V1 si V2, iar iesirea portii este in punctul median V indicat pe schema, fig. 6.

Fig. 6. Schema unei celule NAND de tip c-MOS.

8

G

Daca oricare din intrari este pe 0-logic, adica 0V --> macar unul din tranzistoarele n este blocat, iar cel putin unul din tranzistoarele p conduc si aduc la iesire potentialul VDD - adica 1-logic.

Doar daca pe ambele intrari avem 1-logic, atunci cele cu canal p sunt blocate, iar cele cu canal n conduc si fiind in serie aduc la iesire potentialul Vss = masa, adica 0-logic. Pentru analiza semnalelor care comuta intre 1 si 0-logic in timp, vom utiliza surse de tensiune de tip pwl. Aleg un pas de timp t=5ns, iar analiza o putem extinde intre 0ns pana la 100ns, timp in care V1 si V2 comuta intre 0V si 5V.

Noi trebuie sa verificam tabela de adevar a portii care este:

V1	V2	V (out)
0	0	1
0	1	1
1	0	1
1	1	0

Dupa ce editati schema din fig. 6, setati pentru sursele pwl de tensiune urmatoarele valori, ca in netlistul urmator:

* Schematics Netlist *

M_M1 \$N 0003 \$N 0001 \$N 0002 \$N 0003 MbreakP M_M3 \$N_0002 \$N_0001 \$N_0004 \$N_0004 MbreakN \$N_0003 0 5V V_VDD \$N 00010 V V1 +PWL 0n 0 35n 0 40n 5 100n 5 \$N 0004 \$N 0005 0 0 MbreakN M M6 \$N_0003 \$N_0005 \$N_0002 \$N_0003 MbreakP M_M2 V_V2 \$N_0005 0 +PWL 0n 0 10n 0 15n 5 25n 5 30n 0 40n 0 45n 0 50n 5 60n 5 100n 5

NOTATI un tabel cu tensiunile V1, V2 si Vout exprimate in volti, care sa confirme tabela de adevar.

Notati valorile curentilor de drena prin tranzistoarele MOS. Cum explicati ca curentii au valori extrem de mici prin toate tranzistoarele? In ce regim totusi circuitele CID consuma energie electrica ?

VERIFICATI ca apar curenti in regimul de comutatie. Trebuie sa obtineti o figura simulata ca fig. 7.

Fig. 7. Curentii prin poarta NAND.

Exercitiul 3. Analiza statica si dinamica a unui circuit cu tranzistoare bipolare.

Se analizeaza un circuit amplificator in configuratie Darlington cu doua tranzistoare bipolare.

Modelul implicit al tranzistorului 2N2222 este:

.model Q2N222	22-X NPN(Is=14.	34f Xti=3 Eg=1.1	1 Vaf=74.03 Bf=255.9 Ne=1.307	
+	Ise=14.34f Ikf=.	2847 Xtb=1.5 Br	=6.092 Nc=2 Isc=0 Ikr=0 Rc=1	
+	Cjc=7.306p Mjc	=.3416 Vjc=.75 F		5
+	Tr=46.91n Tf=4	11.1p ltf=.6 Vtf=	1.7 Xtf=3 Rb=10)	
*	National	pid=19	case=TO18	
*	88-09-07 bam	creation		

Acum vom rezolva urmatoarea problema (problema 7-5.2 din cartea Spice CR, FB, AR). Se da schema din fig. 8. Se cunosc parametrii tranzistoarelor bipolare (V_{BE} =0.6V, β_{F} =100). Se cere: (a) psf; (b) valoarea limita a lui Rc cand celelalte rezistente au valorile din figura, pt ca ambele tranzistoare sa ramana in RAN; (c) Av si frecventele limita de sus si de jos pentru amplificarea in tensiune si evaluare zgomot, (d) Zi, Zo; (e) vizualizarea semnalui de intrare si iesire simultan; (f) analiza Fourier - in cadrul Analizei Transient de la pct. e - unde am semnale in functie de timp.

Mod de lucru.

Se editeaza schema din figura 8. (a) Realizati mai intai analiza psf a acestei probleme de CEF, dar cu ajutorul Spice, bifand la Analysis - Setup - optiunea "Bias Point Details".

Fig. 8. Circuit amplificator cu tranzistoare bipolare.

Rezultatul analizei psf exemplificat se vede in fig. 9. Dvs va NOTATI datele dvs pt psf al fiecarui tranzistor, adica pt fiecare tranzistor - 3 curenti si 3 tensiuni.

(b) Urmatoarea analiza este: se cunosc toate rezistentele din fig. 8, mai putin rezistenta Rc care se cere sa se proiecteze, astfel incat tranzistoarele Q1 si Q2 sa ramana in RAN.

Mod de lucru.

Se fixeaza manual pe rand Rc=10 Ω , 100 Ω , 1k, 5k, 10k, 20k si se vede VCE1,2 pana ies din RAN. (de ex. la Rc=20k -> Q2 e in RAN dar Q1 e in sat; pt Rc = 5k inca Q2 e in sat. Dar pt Rc=1k sunt amandoua in RAN. E clar ca solutia lui Rc limita trebuie cautata intre 1k Ω si 5k Ω .

(c) Se cere Av.

ſ

Mod de lucru.

Se editeaza (sau se incarca) fisierul cu schema din fig.8. Se seteaza valorile β F = 100, dupa cum este in textul problemei, pt ambele tranzistoare. Se da Analysis -> Setup -> AC Sweep - in fereastra se da: AC sweep - decadic, intre 10Hz si 1000kHz cu 101pct /decada, OK. Apoi Simulate. (Obs. sursa alternativa sa fie de tip VAC !). La Add Trace veti selecta pe post de Av o expresie de tipul: (VQ1:c) / (VQ1:b).

Fig. 9. Exemplu de analiza psf cand s-au folosit parametrii impliciti ai tranzistoarelor (β_F =255 etc).

ഹ

Fig. 10. Exemplu de variatie a tensiunilor VCE1 si VCE2 in functie de Rc. Gama acceptabila pt Rc este aceea ce asigura ambele VBC < 0V si VBE >0V.

Daca se utilizeaza parametrii impliciti nemodificati ai tranzistarelor se obtine un Av -simulat de 63 la 1kHz, ca in fig. 11. Dvs NOTATI valoarea obtinuta de Dvs, cand ati luat parametrii tranzistoarelor impuse ca in problema (cu β F = 100).

Tot de pe acest grafic, notati frecventele fs si fj la care amplificarea scade de 0.707ori fata de platoul maxim.

ഹ

Fig. 11. Exemplu de simulare a amplificarii in tensiune Av.

ſ

(d) **Mod de lucru**. Pentru simularea lui Zi, lasam acelasi circuit si acelasi tip de analiza, si daca V4 este notatia in Schematics a sursei AC, la Add Trace vom selecta o functie de tipul: V(V4:+)/I(V4), adica Zi, ca in fig. 12. NOTATI valoarea lui Zi la 3 frecvente: la frecvente medii (pe palier), la frecvente inalte si la frecvente joase. Explicati acasa, in referat, de ce Zi creste la frecvente joase, si de tinde la zero la frecvente inalte.

Fig. 12. Simularea lui Zi.

D

Calculul lui Zo impune modificarea circuitului, si anume prin pasivizarea generatoarelor de tensiune. Aplicand in loc de sarcina RI o sursa VAC de 100mV si pasivizand Vin, obtinem circuitul din fig. 13. Daca sursa AC este V5, noi vom afisa pe Zo ca o functie de tipul: V(V5:+)/I(V5), fig. 13.

Fig. 13. Schema lui Zo si impedanta Zo simulata.

(e) vizualizarea semnalui de intrare si iesire simultan;

Mod de lucru.

.C

In schema de simulare a lui Av, inlocuim sursa VAC care era pe post de V1, cu o sursa sinusoidala - **Vsin** cu Voff=0, Vamplit=0.01V si FREQ=1k si alegand analiza Transient intre Oms si 20ms, rezulta si semnalul mic de intrare si semnalul amplificat de iesire, fiecare cu componenta sa continua, fig. 14. Gasiti un mod de a reprezenta cele doua tensiuni fara componenta continua, ca in fig. 15. Indicatie - am nevoie de condensatoare de cuplaj la intrare si iesire.

ſ

Fig. 14. Tensiunea de iesire V(Q1:c) si tensiunea de intrare V(Q1:b) in functie de timp, la Rc=1 $k\Omega$, cu componente continue.

Fig. 15. Schema de simulat si semnalele Vin si Vout fara componenta continua, centrate pe OV si unde se vede inversia de faze.

(f) analiza Fourier. Aceasta analiza implica calculul transformatei Fourier, utilizand algoritmul FFT, pentru un semnal electric variabil in timp, ales din schema.

Mod de lucru.

Analiza Fourier se poate selecta in cadrul analizei Transient. Aici bifam in plus: Analysis - Setup -Transient - si apoi selectam analiza in timp de la 0 la 20ms, dar bifam si Fourier, si alegem frecventa centrala (1kHz), numarul de armonice (2) si Output variab: V(Q1:c). Apoi ok. Dupa Simulate, dau Add Trace, vizualizam V(Q1:c) in timp. Si apoi vrem pt acest semnal si transformata sa Fourier - dam Trace -Fourier - acum aleg V(Q1:c) si ok. Rezulta grafic ca in fig. 16.

Fig. 16. Analiza Fourier a semnalului de iesire V(Q1:c).

ANEXA

D

DISCRETE SEMICONDUCTORS

	NPN s	switching transist	tors			2N222	2; 2N2	22224
	FEATURES	8		PINNING				
	High curr	rent (max. 800 mA)		PIN	1	DESCR		
	· Low volta	age (max. 40 V).		1	emitter			
				2	base			
	APPLICAT	IONS		3	collector,	connected	to case	
3	 Linear amplification and switching. 							
		23454						
1	DESCRIPT	ION		a+1.				3
1	NPN switch	ing transistor in a TO-18 me	etal package.	200			: (n
				Fig.1 S	Simplified out	иш line (TO-1	054 8) and syr	1 nbol.
				Fig.1 5	Simplified out	Ine (TO-1	084 8) and syr	1 nbol.
6	QUICK RE	FERENCE DATA		Fig.1 5	Simplified out	Ine (TO-1	8) and syr	nbol.
-	QUICK RE SYMBOL VCBO	FERENCE DATA PARAMETER collector-base voltage	open emitter	Fig.1 5	Simplified out	Ine (TO-1	8) and syr	nbol.
-	QUICK RE SYMBOL V _{CBO}	PARAMETER 2N2222	open emitter	Fig.1 S	Simplified out	MIN.	 (284) 8) and syr MAX. 60 	nbol.
400.20	QUICK RE SYMBOL V _{CBO}	FERENCE DATA PARAMETER collector-base voltage 2N2222 2N2222A	open emitter	Fig.1 5	Simplified out	MIN.	 MAX. 60 75 	uni v v
/ay 29	QUICK RE SYMBOL V _{CBO}	PERENCE DATA PARAMETER collector-base voltage 2N/2222 2N/222A collector-emitter voltage	open emitter	Fig.1 5	Simplified out	MIN.	 8) and syr MAX. 60 75 	UNI V V
	QUICK REI SYMBOL VCBO VCEO	FERENCE DATA PARAMETER collector-base voltage 2N2222 2N2222A collector-emiter voltage 2N2222	open emitter open base	Fig.1 5	Simplified out	MIN.	 8) and syr MAX. 60 75 30 	UNI V V V
	QUICK RE SYMBOL VCBO VCEO	FERENCE DATA PARAMETER collector-base voltage 2N2222 2N2222A collector-emitter voltage 2N2222 2N2222A	open emitter	Fig.1 S	Simplified out	Min.	 8) and syr MAX. 60 75 30 40 	UNI V V V V
	QUICK REI SYMBOL VCBO VCEO	FERENCE DATA PARAMETER collector-base voltage 2N2222 2N22222 2N22222 2N2222A collector-emitter voltage 2N2222A collector current (DC)	open emitter	Fig.1 5	Simplified out	MIN.	 8) and syr MAX. 60 75 30 40 800 	V V V V V V V V
/lay 29	QUICK RE SYMBOL VCBO VCEO IC Ptot	FERENCE DATA PARAMETER collector-base voltage 2N2222 2N2222A collector-emitter voltage 2N2222A collector current (DC) total power dissuption	open emitter open base Tamb < 25 °C	Fig.1 S	Simplified out	MIN.	 8) and syr MAX. 60 75 30 40 800 500 	V V V V V V V V V V V V V V V V V V V
/ay 29	QUICK RE SYMBOL Vcbo Vcbo Ic Ptot hFE	FERENCE DATA PARAMETER collector-base voltage 2N2222 2N2222A collector-emitter voltage 2N22222 2N2222A collector current (DC) total power dissipation DC current gain	open emitter open base T _{areb} ≤ 25 °C I _C = 10 mA, V _{CE} :	Fig.1 s	Simplified out	MIN. - - - - - 75	MAX. 60 75 30 40 800 500	V V V V V MA mW
May 29	QUICK RE <u>SYMBOL</u> Vсво Vсво Vссо Ic Ptot h _{FE} f _T	PERENCE DATA PARAMETER collector-base voltage 2N2222 2N2222 2N2222A collector-emitter voltage 2N2222 2N2222A collector-urrent (DC) total power dissipation DC current gain transition frequency	open emitter open base Ic = 10 mA; Vcc; Ic = 20 mA; Vcc;	Fig.1 5	Simplified out	Min. - - - - 75	 8) and syr 8) and syr 60 75 30 40 800 500 - 	V V V V MA mW
/ay 29	QUICK REI SYMBOL Vcво Vcво Vcео Ic Ptot hFE fT	FERENCE DATA PARAMETER collector-base voltage 2N2222 2N2222A collector-emitter voltage 2N2222 AV2222A collector-emitter voltage 2N2222 Collector-emitter voltage 2N2222 Collector-emitter voltage 2N2222 2N222 2N2222 2N2222 2N2222 2N2222 2N2222 2N2222 2N2222 2N2222 2N222 2N222 2N2222 2N22 2N222 2N222 2N222 2N222 2N222 2N22 2N22 2N22 2N22 2N2 2N2 2N2 2N2 2N2 2N2 2N2 2N2 2N2 2N2 2N2 2N2 2N2 2N2 2	open emitter open base Tamb < 25 °C	5	Simplified out	MIN. - - - - 75 250	MAX. 60 75 30 40 500 -	V V V V MHz
/łay 29	2UICK RE SYMBOL VCB0 VCE0 IC Ptot hFE f _T	FERENCE DATA PARAMETER collector-base voltage 2N2222 2N2222A collector-servitler voltage 2N2222A collector current (DC) total power dissipation DC current gain transition frequency 2N2222A	open emitter open base Tamb < 25 °C	0NDITIONS	Simplified out	MIN. - - - - 75 250 300	 MAX. 60 75 30 40 800 500 - <	I UNI mbol.

os Semiconductors	Product specification
-------------------	-----------------------

The second

СНА

MAX. UNIT

MIN.

60 V 75 V Product specification

2N2222; 2N2222A

NPN switching transistors

Philips Semiconductors

NPN switching transistors 2N2222; 2N2222A

LIMITING VALUES

Phil

Philips Semiconductors

SYMBOL	PARAMETER	CONDITIONS	
V _{CBO}	collector-base voltage 2N2222 2N2222A	open emitter	
V _{CEO}	collector-emitter voltage 2N2222	open base	

VCEO	collector-emitter voltage 2N2222	open base	-	30	v
	2N2222A			40	٧
VEBO	emitter-base voltage	open collector			
	2N2222		2	5	V
	2N2222A		-	6	V
lc	collector current (DC)		-	800	mA
CM	peak collector current		-	800	mA
BM	peak base current		-	200	mA
Ptot	total power dissipation	T _{amb} ≤ 25 °C	-	500	mW
		T _{case} ≤ 25 °C	77	1.2	W
T _{stg}	storage temperature		65	+150	°C
Tj	junction temperature		2	200	°C
Tamb	operating ambient temperature		-65	+150	°C

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
Rthja	thermal resistance from junction to ambient	in free air	350	K/W
R _{thje}	thermal resistance from junction to case		146	K/W

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
IC80	collector cut-off current				
	2N2222	I _E = 0; V _{CB} = 50 V	-3	10	nA
		IE = 0; VCB = 50 V; Tamb = 150 °C	-	10	μA
ICBO	collector cut-off current				
	2N2222A	I _E = 0; V _{CB} = 60 V	-	10	nA
		I _E = 0; V _{CB} = 60 V; T _{amb} = 150 °C	-	10	μA
EBO	emitter cut-off current	I _C = 0; V _{EB} = 3 V	-	10	nA
h _{FE}	DC current gain	I _C = 0.1 mA; V _{CE} = 10 V	35		
		Ic = 1 mA; VcE = 10 V	50	-	
		I _C = 10 mA; V _{CE} = 10 V	75		
		Ic = 150 mA; VcE = 1 V; note 1	50	-	
		Ic = 150 mA; VcE = 10 V; note 1	100	300	
hfe	DC current gain 2N2222A	I_C = 10 mA; V_{CE} = 10 V; T_{amb} = $-55~^\circ C$	35	_	
hfe	DC current gain 2N2222 2N2222A	I_C = 500 mA; V_{CE} = 10 V; note 1	30 40	-	
VCEsat	collector-emitter saturation voltage			<u> </u>	1
	2N2222	Ic = 150 mA; Ia = 15 mA; note 1	2.1	400	mV
		Ic = 500 mA; Is = 50 mA; note 1	_	1.6	V
VCEsat	collector-emitter saturation voltage				
	2N2222A	Ic = 150 mA; Ig = 15 mA; note 1		300	mV
		Ic = 500 mA; Is = 50 mA; note 1	-	1	V
VBEsat	base-emitter saturation voltage	- = 150 mA: - = 15 mA: note 1		12	V
	214222	le = 500 mA; le = 50 mA; note 1		2.6	V
Variat	base-emitter saturation voltage	IC - Soo met, ig - So met, note i	-	2.0	
* DEsat	2N2222A	le = 150 mA: le = 15 mA: note 1	0.6	12	v
		lo = 500 mA; lo = 50 mA; note 1	0.0	2	V
C.	collector canacitance	$l_{r} = i_{r} = 0$; Ver = 10 V, f = 1 MHz	_	8	DE.
C.	emitter canacitance	$I_{e} = I_{e} = 0; V_{ee} = 500 \text{ mV}; f = 1 \text{ MHz}$		ľ	Pr
~e	2N2222A	1C - 16 - 0, VEB - 000 111, 1 - 1 Mille	-	25	pF
fT	transition frequency 2N2222 2N2222A	I _C = 20 mA; V _{CE} = 20 V; f = 100 MHz	250	-	MHz
F	noise figure 2N2222A	I _C = 200 μA; V _{CE} = 5 V; R _S = 2 kΩ; f = 1 kHz; B = 200 Hz	-	4	dB
5				1.22	1

A

Philips Semiconductors	Product specification
NPN switching transistors	2N2222; 2N2222A

Data sheet status This data sheet contains target or goal specifications for product development. This data sheet contains preliminary data; supplementary data may be publish. This data sheet contains final product specifications. Objective specificati Limiting values

Initially values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation if the device at three or at an orther conditions above theme given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information

rm part of the sp is given, it is advisory and does

LIFE SUPPORT APPLICATIONS

D

These products are not designed for use in life support appliances, devices, or systems where maifunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

Argentina: see South America	Netherlands: Postbus :
Australia: 34 Watertoo Road, NORTH RYDE, NSW 2113, Tel. +61 2 9805 4455, Fax. +61 2 9805 4465	New Zealand: 2 Viscer
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,	Tel. +64 9 849 4160, Fa
Tel. +43 1 60 101, Fax. +43 1 60 101 1210 Referenzi Motel March Provinces Cantes Birl 3 c 1211 Valedaniki Dir B	Norway: Box 1. Mangle Tel. +47 22 74 8000. Fe
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773	Philippines: Philips Se
Belgium: see The Netherlands	105 Valero St. Salcedo Metro MANILA Tel all'
Jrazil: see South America	Peland: III Jukiska 10
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 11 James Bounchier Blvd., 1407 SOF A.	Tel. +48 22 612 2831, F
Tel. +359 2 689 211, Fax. +359 2 689 102	Portugal see open
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. 1 800 204 7385	Burning Dicker Durning
ChinaHong Kong: 501 Hong Kong Industrial Technology Centre,	Tel. +7 095 755 6918, F
72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700	Singapore: Lorong 1, T Tel. +65 350 2538, Fax.
Colombia: see South America	Slovakia: see Austria
Zzech Republic: see Austria	Slovenia: see taly
Denmark: Prags Boulevard 80, PB 1918, DK-2300 COPENHAGEN S. Tel. +45 32 88 2036, Fax. +45 31 57 0044	South Africa: S.A. PHI 2092 JOHANNESBURG
Finland: Sinkalionte 3, FN-02530 ESPOD, Tal: +358.9 615800, Fax: +358.9 61580920	South America: Roa d
France: 4 Rue du Port-aux-Vins, 8P317, 92156 SURESNES Cedex, (e) +331 40.99 0161 Fax: +33 1.40.99 6477	04552-903 53o Paulo. Tel. +55 11 821 2333, F
Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel +49 40 23 53 60, Fax, +49 40 23 536 300	Spain: Balmes 22, 080 Tel. +34 3 301 6312. Fa
Greece: No. 15, 25th March Street, GR 17778 TAVROGATHENS, Tel. +30 1 4894 339/239, Fax. +30 1 4814 240	Sweden: Kottbygatan 7 Tel. +46 8 632 2000, Fa
Hungary: see Austria	Switzerland: Almendel
India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd Worl, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722	Talwan: Philips Semico
Indonesia: see Singapore	Theirer, Issen ret en
ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7540 000, Fax. +353 1 7540 200	209/2 Sanpavuth-Bangr Tel. +66 2 745 4090. Fa
Israel: RAPAC Electronics. 7 Kehilat Saloniki St. PO Box 18053. TEL AVIV 61180, Tel. +972 3 645 0644, Fax. +972 3 649 1007	Turkey: Talatpasa Cad Tel. +90 212 279 2770
taly: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 2 6752 2531, Fax, +39 2 6752 2557	Ukraine: PHILIPS UKR 252042 KIEV, Tel. +380
Japan: Philips Bidg 13-37, Kolman 2-chome, Minato-ku, TOKYO 108, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077	United Kingdom: Philip MIDDLESEX UB3 58X
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415	United States: 611 Ear Tel. +1 800 234 7381
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tal. +60.3 750 5214, Fax. +60.3 757 4880	Unuguay: see South An
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381	Vietnam: see Singapor Yugoslavia: PHILIPS,
Middle Fast see halv	Tel. +381 11 625 344, F

90050, 5600 PB EINDHOVEN, Blag, VB, fax, +31 40 27 88399 ter Place, C.P.O. Box 1041, AUCKLAND, kx, +64 949 7811 trud 6612, CSLO, kx, 467 22 74 8341 M. No. 22 FA 0.41 Miconductors Philippines Inc., Village, P. O. Box 2108 MOC, MAKATI, 3 2 816 6390, Fax. +03 2 817 3474 Pt 04-132 WARSZAWA, Fax. +48 22 612 2327 n UL Usatcheva 35A, 119048 MOSC Fax: +7 095 755 6919 Toa Payoh, SINGAPORE 1231, : +65 251 6500 LIPS Pty Ltd., 195-215 Main Road Ma k, P.O. Box 7438 Johannesburg 2008, ax, +27 11 478 5494
 Tay. +27 14 473 5464

 Foreizo ZD, Bhoro Kaller S1,

 SAD PALACI. - 377, Foral.

 SAD PALACI. - 370, Foral.

 SAD PALACI. - 377, Foral.

 SAD PALACI. - 370, Foral.
 CTRONICS (THAILAND) Ltd., a Road Prakanong, BANGKCK 10260 , +65.2 308 0755 x. 465 2 398 0793 No. 5, 80640 GÜLTEPEASTANBUL Fax. 480 212 282 6707 ANC. 4940 212 282 6707 ANNE. 4 Patrice Lummmba str., Building B, Floor 7 Had 284 276 7. Fin. +308 64 200 6461 95 Semiconductors Ltd., 276 Bath Road, Hayes, Tol. +44 161 730 5000, Fin. +44 181 754 Ba21 L Angues Avenue, SUNNYVALE, CA 84086-3408 # Trg N. Pasica 5/v, 11000 BEOGRAD, Fax +381 11 635 777

VEN, Bidg. VB,

For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications, Building 8E-p. P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax, +31.40 27 24825 atics N.V. 1997 SCA5 vation presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed too. No labelieve with excepted by the public for any consequence of its use. Publication thereof does not convey nor imply any license int. If with instructural or intellectual property signs.

Let's make things better.

Philips Semiconductors

9 PHILIPS A